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Abstrad. We study one-dimensional harmonic chains in which clusters of two or three defect 
atoms are embedded randomly. The disorder in the systems appean in the masses of the 
atoms. Reflectionless modes are obtained by studying different kinds of correlation among the 
m e s .  The localization behaviour of the modes around these special frequencies is examined 
analytically as well as numerically. To discem the nature of the modes at and around those 
frequencies, density of states, bandwidth scaling and site Green functions are sNdied. If the 
special frequencies lie within the common band of the constituent atoms and at zero the modes 
are extended ak and around them. However, the modes are critical when the special frequency 
appears at the upper band edge of the host system. The number of non-scatted modes is 
estimated for all cases. It is - f i  for the dimer problem. For the trimer problem with 
degenerate resonances appearing inside the constituent band it is - N3/'.  If Ule degenerate 
resonances of the trimer appear at W O  freqency the number of non-scattered modes is - NSl6. 

1. Introduction 

In one-dimensional disordered electronic systems almost all states are exponentially 
localized [I-31. Therefore, in  this context the study of onedimensional correlated disordered 
systems [4-221 is of immense interest form both the theoretical and the experimental point 
of view [23]. In the tight-binding representation if the site energies [5-111 or off diagonal 
interactions 114, 171 or both [4,12 13, 151 are correlated in binary disordered chains, it 
can be shown that the systems sustain a set of non-scattered states. The number of 
such non-scattered states in this set is - a, where N is the length of the chain. The 
basic requirement for obtaining such non-scattered states is the vanishing of the reflection 
coefficient at a particular energy. This is called the resonance energy or special energy. 
The position of this energy depends on the nature of the correlation. For example in the 
random dimer model (RDM) 15,691 the dimer energy is the special energy. Furthermore, 
this resonance energy must belong to the common band of the constituent atoms. Due to 
the presence of such states the mean square displacement (MSD) if an initially localized 
particle grows as - t3/* (i.e. superdiffusive in nature) [4-6,14,15]. This is m e  only when 
the resonance energy appears inside the common band of constituent atoms. But when the 
resonance is at the host band edges the motion appears to be diffusive. The non-scattered 
states are also observed in one-dimensional disordered systems with random periods [24,25]. 
Since the disordered systems with special energy show anomalous transport behaviour, the 
recent trend is to increase the number of such non-scattered states [18-221. This can be 
achieved by increasing the correlation length. Instead of taking two sites of equal strength, 
if we consider n sites with equal strength we obtain (n - 1) resonance energies where 
the reflection coefficient vanishes [IS, 191. Since each resonance energy contains a set of 
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- f i  non-scanered states [18], the number of such states increases the prefactor of the 
number of states. Consequently, the exponents of the MSD will not change. In our recent 
work [ZO,2l] we have shown a way to increase the number of such states at the exponent 
level. In RTMDR [20-22], where two resonance energies merge at a particular energy inside 
the constituent band the number of non-scattered states is - N3I4. Furthermore, the MSD is 

The onedimensional harmonic chain can be mapped to a tight-binding model ("4) of 
an electronic system. Hence, almost all normal modes are localized in the one-dimensional 
disordered harmonic chain. This was originally shown by Dean [26]. However, there 
is one important difference between the disordered one-dimensional harmonic chain and 
that of the electronic system in the TBM. It can be shown by using the transfer matrix 
method that the one-dimensional disordered harmonic chain behaves like a perfect system 
at the frequency w = 0 [27,28]. Matsuda and Ishii [27] analytically showed that in such 
systems - low-frequency modes are not localized. They also showed the behaviour of 
thermal conductivity due to the presence of such low-f~equency modes for different boundary 
conditions. Recently, a model of a one-dimensional correlated disordered harmonic chain 
bas been studied [29]. All masses in this system have been considered to be equal. The 
spring constants are assumed to take two values. Furthermore, one of them appears in a 
pair while the other one appears randomly. The presence of delocalized modes of vibration 
in this particular model is shown by means of multifractal analysis. However, the number 
of such modes is not shown clearly. The purpose of this paper is to show the non-scattered 
modes in various onedimensional correlated disordered harmonic chains. In all systems we 
have taken the disorder in the masses of atoms. Moreover, different kinds of correlation 
among masses are considered. As the basic criterion for obtaining the non-scattered states in 
one-dimensional correlated disordered electronic systems is the vanishing of the reflection 
coefficient, we study here the reflection properly of the harmonic chains after transforming 
the systems to the equivalent tight-binding models. In each case we show the existence of 
a reflectionless mode at frequency W. We also show that even in the correlated disordered 
one-dimensional harmonic chains degenerate resonances can be obtained. 

The organization of this paper is as follows. In section 2 we study the reflection 
properties for different systems. The localization behaviour around the frequency 00 is 
also studied here analytically as well as numerically. In section 3 we study the density of 
states, bandwidth scaling and Green function analysis to characterize the nature of modes 
around 00. The number of non-scattered modes around for different cases is estimated 
in section 4. We end this article by summarizing our main results. 
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found to grow as - t',7s WI. 

2. Special frequencies and localization behaviour 

2.1. Refection coeflcient 

The equation of motion for a one-dimensional array of masses [ m i )  coupled by harmonic 
springs is 

Here pi is the spring constant of the ith spring that couples the two masses m; and mi+,. 

w is the frequency of the harmonic chain and ut is the Fourier transform of the amplitude 
of vibration of the ith mass, mi. We consider the case where all constants pi have the 
same value and without any loss of generality this value can be taken to be unity. So, the 
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disorder in the harmonic chain arises due to the randomly placed atoms of different masses. 
The transfer matrix equation is 

where the "fer matrix 

Note also that Ti is a unimodular matrix. The problem of the lattice vibration is, however, 
mathematically equivalent to the TBM of the electron. The equivalence between the two 
systems can be obtained through the following mapping: 

Since our motivation in this present paper is to study the resonance properties of disordered 
binary systems, mp and mi here denote the mass of the host and impurity atoms respectively. 
In the transformed tight-binding model E is the electronic energy and the site energies of 
the host and impurity sites are 0 and ~i respectively. The nearest-neighbour interactions are 
V which is considered to be unity. 

To study the resonance property of the correlated disordered systems, it is essential to 
examine the resonance property of a perfect system with a single correlated impurity unit 
[9,30]. So, we consider first a one-dimensional monatomic harmonic chain which contains 
a pair of defect atoms with mass ma. For the host monatomic chain, we assume that the 
mass of each atom mp is unity. Inasmuch as this system is equivalent to a single dimer in a 
perfect host system in the TBM [ 5 ] ,  in the lattice vibration model we call this pair of defect 
atoms a 'dimer'. By using the mapping (4) it can be shown that the mode of frequency 
00 = is reflectionless, provided this special frequency belongs to the common band 
of the constituent atoms. Note that the band of the monatomic lattice lies between zero and 
four while for the other constituent atom of mass ma we have 0 < m2 < 4 /m, .  Hence, 
the restriction on the defect mass for obtaining the reflectionless mode is that m, > 0.5. 
This feature is also obtained in the lattice vibration where the nearest-neighbour coupling 
between atoms appears in pairs but othenvise is random [29]. Instead of taking a cluster of 
two equal masses one can also consider a cluster of n atoms of equal mass. By equating the 
transfer matrix of the cluster to the unit matrix, it can be shown that the system has (n  - 1) 
reflectionless modes. The frequency of these modes can be obtained from the zeros of the 
nth Chebysev polynomial of the second kind. The argument of the polynomial is half of 
the trace of the constituent transfer matrix [31]. 

In the hierarchy the next system of interest is a symmetric cluster of three defect atoms 
embedded in a perfect chain. The mass of the atoms in the host lattice, mp. is again assumed 
to be unity. The mass of the central atom in the cluster is mo while the other mass is m,. 
Again all spring constants are considered to be unity. The system is equivalent to a trimer 
[20] in a perfect chain in the TBM. If the site energies of the trimer can be denoted as E $ ,  

€0 and cs and all nearest-neighbour interactions are unity, the transformations (4) can be 
written as 

2-02 + E (mo- 1)02 -+ €0 (m, - 1)o2 --f ss. (5) 
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Since mp is the reference mass, the site energies of the host lattice in the transformed TBM 
are zero. To obtain the reflectionless modes of vibration of the special frequencies we set 
the numerator of the reflection coefficient /RIZ for the three-site correlation in the TBM to 
zero. Consequently, we obtain [ZO] 

P K Dana and K Kimdu 

(6) 2 [ E  - (€0 + € $ ) E  +EO€, - 2]Er + €0 = 0. 

Using the transformations (5 )  in (6) we obtain a third-order algebraic equation in w2. The 
solutions of this equation are 

w; = 0 w; = (& + ;) * /-. moms 1-m2 (7) 

The criteria to obtain these reflectionless modes are that the frequency, WO, should be real, 
positive and inside the common band of the constituent atoms. 

Two special frequencies will coincide at 00 = J l / m s  + l/mo (see figure l(a)) provided 

Since mo is a real and positive quantity, m, cannot be less than a .  This is the lower bound of 
m,. Furthermore to ensure that mo is real for all values of m,, we should choose the positive 
sign in (8). When m, = $, the special frequency 00 is obtained at the upper band edge 
of the host as shown in figure l(b). This type of behaviour is also obtained in the RTMDR 
[20,21]. The number of non-scattered states in the RTMDR has been shown to increase as - N3I4, where N is the length of the sample. So, in relation to the non-scattered modes 
we should expect the same behaviour in this case. In this vibrational system we find that 
the degenerate frequency moves towards w = 0 with increasing m, as well as mo. But the 
degenerate solution does not superimpose on w = 0 for any finite value of m,. However, 
w = 0 will be a second solution of equation (6) if the relation 

mo=3-2m,  (9) 

is obeyed (see figure I(c)). Inasmuch as ma is a real and positive quantity we must have 
0 < ms < i. These aTe the major results of this paper. It should be noted that in all 
constraints for three-atom correlated systems the mass of the host lattice is also connected 
with ma and m,. So, arbitrary host systems cannot be taken to observe the merging of the 
solutions of equation (6). 

2.2. Localization behaviour 

So far we have considered systems with a single cluster of defect atoms. Now we consider a 
disordered harmonic chain where dimers or trimers are randomly distributed in an otherwise 
perfect chain of mass mp. The reflection coefficient of this type of correlated disordered 
chain also vanishes at the special frequencies. The case of the trimer with degenerate 
resonances is shown in figure 2 as an example. The vanishing of the reflection coefficient 
at the special frequencies happens due to the commutation of the cluster transfer matrix 
with the perfect site transfer matrix at that frequency [15,20]. For example, in the dimer 
case, the dimer transfer matrix reduces to the unit matrix at 00 = m. For the trimer 
problem with degenerate special frequency it can be shown that the transfer matrix commutes 
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FIgum 1. Plot of reRection coeficient as a function 
of u2 for a single trimer in the prfect harmonic 
chain. (a) Here m, = 3 for all cases. The loog- 
dashed curve corresponds to mg = 2.5; the dot-dashed 
curve Lo mo = 4; the solid curve corresponds to 
mo = 6. where two resonances merge. The shofl- 
dashed cnrve is for mo = 7. (b) Same as (a) but 
m, = 0.75, ma = 0.8,0.5,0.375 (in this case two 
resonances merge) and 0.1 respectively. (c) Same as 
(a) but m, = 0.5, mo = 0.5. 1.2 (in this case two 
resonances merge) and 3 respectively. 

Figure 2. Plot of resection coefficient as a function 
of uz for a mndom segment of length of N = I@ 
where trimer clusters with concentration p = 0.25 m- 
distributed randomly. Here m, = 3 and mq = 6. 

with the perfect site transfer matrix. Due to the vanishing of the reflection coefficient at 
the special frequencies a neighbourhood characterized by vanishingly small reflection is 
obtained. Hence, the inverse localization length or Lyapunov exponent ( y )  of the modes in 
this neighbourhood can be approximately written as [5,9,32] 

Y - IRI'. (10) 

/RIZ in (IO) is the reflection coefficient of a host system containing only one dimer or trimer. 
Since lRIZ contains in it information about the scattering of an incident wave by impurities, 
this is a reasonable approximation of y .  
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We now study the localization behaviour of modes around WO = a for the dimer 
problem. The leading-order term in the Taylor series expansion of IRI2 is - ( o - ~ ) ~  Then 
WO e 2 and - (U-Q) for 00 = 2. So, the localization length ( y - ’ )  shows (0-m)- and 
(o - WO)- ’  type singular behaviour depending on whether 0~ is less than or equal to two. 
A similar procedure can be used to obtain the localization behaviour of the modes for the 
trimer problem with degenerate special frequencies. The reflection coefficient in this case 
in the neighbourhood of when is 
inside the common band of constituent atom, two and zero respectively. Consequently, the 
localization length shows singular behaviour as (o -WO)-’,  (o - and (w - w ) - ~  for 
the cases discussed above. This type of behaviour of IRIZ, and hence of y .  can be analysed 
very easily. Since lRIZ is a positive semidefinite function, the curve will show a minimum 
at og = 2/m, for the dimer problem. Inasmuch as the minimum value of IRI2 is zero, the 
first derivative of it with respect to wz vanishes at the special frequency. This, of course, 
requires the special frequency to be inside the constituent band. Therefore, the series starts 
with (02 - mi)’. Hence, the quoted result follows. In the case of the special frequency 
appearing at any one of the band edges, [RI2 = 0 is no longer the minimum of the curve 
of IRI2. This can be shown by analytical continuation of IRI2. Hence, the leading-order 
term in the Taylor series expansion of IRIZ will be (02 - 0,). Since, at the lower band 
edge, 00 = 0, the series starts with oz. For oi = 4, the leading-order term is first order in 
(o - 00). In the trimer problem with doubly degenerate special frequency one maximum 
and two minima merge at the special frequency. So, the first and second derivatives of [RIZ 
with respect to o2 along with the function vanish. Furthermore, U(: is inside the common 
band of constituent atoms. Consequently, lRIZ should be symmetric around W. Hence, 
the third derivative also vanishes. Thus the series starts with (02 - Howver, at the 
spectral boundaries, previous arguments also hold good here. Hence, the series expansion 
of lRIZ starts with (U’ - 0 0 2 ) ~  around oz = 0 and OJ; = 4. We then obtain y(o) - os 
around WO = 0 and y - (2 - w ) ~  around Q = 2. We will study next the localization 
behaviour numerically to substantiate our analytical result. 

The displacement of the Nth atom with frequency w,  U&) in the vibrational system 
can be calculated by using the transfer matrix method. For given values of U I  and KO, 
(U!  + ut  # 0) it is given by I271 

behaves as - (w - wJ4, (o - ~ 0 ) ~  and (U - 

The Lyapunov exponent, y .  is 1161 The Lyapunov exponent, y .  is 1161 
I 

y = lim - ReKN(oZ) 
N+m N 

where K N ( ~ ’ )  is the logarithm of the eigenvalue of QN(U’) whose modulus is greater than 
unity. Here, Q,(o*) is defined as 

In figure 3 we have plotted the average localization length around the special frequency as 
a function of lo - 001 for the dimer system and the trimer with degenerate. frequencies. 
For the dimer we consider the case where wg is inside the common band of constituent 
atoms. For the trimer we consider the cases where the degenerate frequency appears inside 
the constituent band as well as at w,, = 0. The observed scaling behaviour is given in the 
corresponding figures (see figure 3). The average is taken over twenty different realizations 
of the systems. The maximum length of the system considered is IO’. Our numerical results 
show a good agreement with the analytical results obtained above. 
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3. Nature of normal modes at and around the special frequencies 

3.1. Density of stntes 

The nature of states in the systems can be anticipated from the behaviour of the density 
of states (DOS). The fluctuations in the DOS correspond to the localized modes and its 
smoothness around a frequency indicates the possible presence of non-scattered modes 
there [17]. We study the DOS numerically using Dean's method [33], which is based on the 
negative eigenvalue theorem. The negative eigenvalue theorem states that the number of 

___eigenstates with eigenvalues less than or equal to wz is the number of negative values of 
hi(i = 1.2,. . . , N) where hi is determined by 

hi+] = Ai - wz - B;/hi i = 1,2.. , . , N - 1 (14) 

and 

hi = A i  --o 2 . 

Here, 

Ai = 2/mi Bi = 11- 

and 

hi = 
mi-1ui-l 

The definition of hl by equation (15) implies that the mass of the atom at i = 0 is infinite. 
Hence, ug is zero. The negative eigenvalue theorem gives the integrated density of states 
(IDOS). So, the DOS can be obtained by differentiating the IDOS with respect to d. The DOS 
as a function of m2 for different cases is shown in figure 4. When m,, is inside the band of 
constituent atoms the DOS shows smooth behaviour around it, but when m,, is at the spectral 
boundaries the DOS shows divergence behaviour like a perfect system. So, the study of 
density of states suggests the possible presence of delocalized modes around the special 
frequencies in correlated disordered harmonic chains. We study next the scaling behaviour 
of bandwidths for further characterization of the modes around the special frequency. 

3.2. Bandwidih scaling analysis 

The bandwidth scaling method has been used successfully to discern the nature of states 
in one-dimensional quasiperiodic electronic systems 1341 and deterministically aperiodic 
systems [35]. Recently we [10,21] applied this method with some modification to the 
one-dimensional correlated disordered electronic systems. This method nicely exhibits the 
accumulation of extended states around the resonance energies of RDM [IO] and RTMDR [21]. 
So, we apply this method here to characterize the nature of the vibrational modes in the 
neighbourhood of special frequencies. Since QN(oZ) is a unimodular matrix the bands in 
&-space are characterized by I Tr QN(UJ*)~  < 2. If Ai defines the width of the ith band, then 
the extended modes of vibration are characterized by Ai M N-I.  For algebraically localized 
modes, Ai M N-', 01 > 1 and for strongly localized modes, Ai a exp(-piN) where pi 
is a constant. In the neighbourhood of Van Hove singularities, bands exhibit A, M N-' 
[34]. The method of individual bandwidth scaling is described elaborately in [10,21]. The 
basic idea in this scaling analysis is that there exists a band at the special frequencies and 
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Figure 3. Log-log plot of iocaliration length ( y - l )  against 10 - wo1 for different cases. (a) 
dimer clusters of mass ma = 2 are distributed randomly with concentration p = 0.33 in an 

olhenvise perfect chain. (b) The trimer clusters of masses m, = 3 and mu = 6 are distributed 
randomly with concentration p = 0.25 in an otherwise perfect chain. (c) Same as (b) but here 
m, = 0.5 and mo = 2. 
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Figure 4. Plot of the density of states (DOS) as a function of o1 for different cases. The length 
of the segment here is IO5 for all cases. (a) The dimer clusters of m m  ma = 2 are distributed 
randomly with concenlration p = 0.33 in an otherwise perfect chain. Smooth behaviour is 
obtained around o2 = 1. (b) The trimer clusters of masses m, = 3 and mo = 6 are distributed 
randomly with concentralion p = 0.25 in an otherwise perfect chain. The smoothness is observed 
around o2 = 0.5. (c) Same as (b) but here m, = 0.5 and mo = 2. The DOS curve diverges like 
that of a perfect one-dimensional chain around 3 = 0. (d) Same as (b) but m, = 0.75 and 
mg = 0.375. The DOS curve also diverges like that of a perfect chain around o2 = 4. 

this can be used as the reference band (numbered as zero) to analyse the scaling behaviour 
of various bands around it. The bands appearing to the right of the reference band will be 
denoted as lR, ZR, 3R etc and similarly, for the other side, the bands are numbered as lL, 
2L, 3L etc. Here, we show the scaling behaviour of the bands for the himer system with 
a doubly degenerate special frequency. First we consider the case where the degenerate 
frequency appears inside the common band of constituent atoms. The scaling behaviour of 
the bands 0, 5R and 5L is presented in figure 5(a). The bandwidth with index i, Ai, for 
large values of N is found to obey 
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In Ai = lnc; -ai In N (17) 

where cj is the index-dependent constant. The values of c and a are presented in table 1 for 
different regions of N .  The bands do not partition in a systematic way due to disorder for 
small values of N .  Hence, equation (17) is not strictly obeyed in that region. But for large 
values of N the bands show good scaling behaviour with the exponent, a - 1, confirming 
the presence of extended modes of vibration. Of course, the value of N beyond which a 
hand shows good scaling behaviour increases with band index i. This further implies that 
the number of extended modes increases with increasing system size N. As the system is 
a disordered vibrational chain it is obvious that not all bands show a - 1 for finite values 
of N .  This can be explained by invoking the concept of the special spectral zone (ssz) 
[10,21]. The scattering effect due to the defect atoms is negligibly small in the ssz. The 
band which is outside the ssz is not partitioned in a systematic way. This is because of the 
scattering effect. But with increasing N the band enters the SSZ and the scattering effect 
becomes negligibly small. Then the band shows good scaling behaviour. In figure 5(b) 
we have shown the scaling behaviour of the bands 0, 5R and 10R for the case where the 
degenerate special frequency is at @ = 0. Equation (17) is also obeyed by these bands but 
with the scaling exponent a - 2. This is due to the presence of the Van Hove singulaity in 
the DOS of this system at o = 0. All bands show nice scaling behaviour for comparatively 
small values of N. This implies that the number of extended states is large compared to the 
previous case. The scaling exponent a - 2 is also obtained for the case where degenerate 
frequency = 2. The scaling behaviour of bands 0 and 5L is shown in figure 5(c). So, 
the bandwidth scaling analysis shows that the modes at and around the special frequencies 
are exended in nature when the special frequencies appear inside the constituent band and at 
zero. We next show that the modes in the neighbourhood of 00 = 2 are not huly extended. 
This is done by analysing the pole behaviour of the site Green function [36], The scaling 
behaviour of the bands around special frequencies for the random dimer chain is similar to 
what is observed in the trimer system. This is not discussed here. 

Table 1. The value of e and bandwidth scaling index (U) of different bands in different nnps 
of N .  Here m, = 3. mg = 6 and concentration, p = 0.75. 

Range of N 

io2-io3 103-106 

Band index (i) c U c a 

0 1.638 0.957 2.344 1.013 
5R 
5L 

0.556 0.794 2.241 1.008 
0.765 0.841 2.289 1.010 

3.3. Green function analysis 

The site Green functions are calculated for the system containing only one trimer. For 
this calculation transformations (5) together with the well known renormalized perturbative 
expansion (RPE) [36] method have been used. It is well known that the pole of the Green 
function at a particular energy corresponds to a localized mode at that frequency. The site 
Green function for the system under study shows a pole at o2 = 4 when the resonance 
frequency appears at 00 = 2. This is shown in figure 6(a). This indicates that the particular 
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Figure 5. Log-log plot of bandwidth (A , )  against N for different cases. In all cases the trimer 
clusters are randomly distributed with concentration p = 0.25 in an otherwise perfect chain. A 
constant factor Z is added to the ordinate for clarity. (a) Here m, = 3 and mo = 6. The scaling 
behaviour is shown in two regions of N. The scaling exponents for different regions are given 
in table 1. The values of Z are Wen from the top as 2, 1 and 0. @) Same as (a) but m, = 0.5 
and ma = 2. All figures are shown here in one region of N and Z takes the value zem here. 
(c) Same as @) but m, = 0.75 and mo = 0.375. 

mode is localized. On the other hand the reflection coefficient vanishes at WO = 2 and the 
DOS diverges like that of a perfect system around that frequency. Because of this peculiarity 
we argue that the mode is neither truly extended nor truly localized. Hence, the modes in the 
neighbourhood of WO = 2 are algebraically localized. Similar behaviour is also observed 
in the dimer system. But when WO = 0 we do not observe any pole in the site Green 
function at that frequency as shown in figure 6@). The Green function analysis clearly 
shows the difference between the two spectral boundaries in the one-dimensional harmonic 
chain. Note that in electronic systems the site Green function shows the same behaviour at 
both the spectral boundaries. The origin of this difference is the fact that localization for 
the disordered harmonic chain starts from the upper band edge. The localization from the 
lower band edge is strictly forbidden due to the positiveness of U*. On the other hand the 
localization starts from both the band edges in electronic systems. 
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Figure 6. The thick solid line corresponds to the real part of the Green function (G) With defecl 
atoms of m s  m, and mg calcvlated at the other nearwt neighbour of mn as a function of w2. 
The Lhin solid line corresponds to G = l/(m8 - I)02. (a) Here m, = 0.75 and mg = 0.375. 
One of the poles is observed at U* = 4. (b) Here mp = 0.5 and mg = 2. No pole is observed 
at "2 = 0. 

4. Number of non-scattered modes of vibration 

If the non-scattered modes are defined as the modes whose localization length ( y - ' )  is 
superior to the sample size ( N )  then - such states are obtained in the complete 
disordered vibrational systems around the zero frequency 1271. Since in the correlated 
disorder chain other reflectionless modes apart from the mode at zero frequency are present 
there will be more non-scattered modes than in completely disordered systems. In the 
previous section we have shown the presence of a set of non-scattered modes of vibration 
around the special frequencies in correlated disordered chains. The number of such modes 
can be estimated from the scaling behaviour of the total bandwidth [IO]. We, however, 
estimate the number of such modes using the result of localization behaviour and the 
bandwidth scaling analysis. We define the frequency width around WO where these non- 
scattered modes are observed by Am. Then the width of the non-scattered modes decays 
as Aw - N-P.  This is obtained from the localization behaviour of the modes around 00. 
Again from the bandwidth scaling method we find that the modes decay as - 1/N around 
W. If we assume that the non-scattered modes whose localization length is of the order of 
the sample length follow - 1 / N  type scaling behaviour in the bandwidth analysis then the 
number of non-scattered modes An within the region Aw is 

An - N 1 - p .  (18) 
The above expression is me only when 00 is inside the constituent band. Since for the 
random dimer vibrational system p = i, the number of non-scattered modes around 00 
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is - a. For the random himer vibrational systems with degenerate special frequency 
(except wg = 0 and 2) p = a. and the number of non-scattered modes is - N314. Although 
for q, = 0 the bandwidths decay as - l j N 2  around 00 the modes can be shown to 
decay as - 1," in o-space. So, the number of non-scattered modes can be obtained from 
equation (18). Since in this case p = 6, we have An - N516. Thus using the short- 
range correlation among the masses we have increased the number of non-scatLered modes. 
However, all the results discussed above are m e  only when 00 is inside the common band 
of the constituent atoms or at zero. 

5. Summary 

We have studied one-dimensional disordered harmonic chains with different correlations 
among the masses. The correlation produces a special frequency (WO) mode where the 
reflection coefficient vanishes if og belongs to the band of constituent atoms. This special 
property of the system gives rise to the presence of a set of non-scattered modes around these 
particular frequencies. We have also shown here that by introducing appropriate correlation 
among the masses in the trimeric cluster two special frequencies can be overlapped. 
The localization behaviour of the systems around WO is discussed analytically as well as 
numerically. The study of density of states suggests the possible presence of delocalized 
modes around WO. The bandwidth scaling analysis together with the Green function analysis 
confirms the extended nature of the modes around WO for q, is either inside the constituent 
band or ai zero. But when 00 is at the upper band edge the modes are critical like. If we 
consider that the modes whose localization length is larger than the sample size show - 1," 
type scaling behaviour in bandwidth analysis then the random dimer harmonic chain contains - f i  non-scattered modes. Here, N is the length of the chain. The same behaviour is 
also obtained around w = 0 in the disordered harmonic chain. So, due to the presence of 
the pair correlation in the disordered chain the number of non-scattered modes increases in 
amplitude. In the random trimer chain we obtain - N3I4 non-scattered modes when the 
doubly degenerate special frequency appears inside the constituent band. When the doubly 
degenerate frequency appears at w = 0, - N516 non-scattered modes are obtained. The 
concennation and mass dependence of defect atoms on the number of non-scattered modes 
are not discussed here. However, the increase in the number of non-scattered modes in the 
exponent level for the case of the degenerate special frequency in the random himer chain 
should be reflected in the low-temperature thermal conductivity. This work is in progress. 
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